Project-AI

Project AI


πŸ… Badges & Logos

CI Status Code Coverage Test Coverage License: MIT Python: 3.10+ Docker Ready Project Website Discussions Security Policy Code Style: Ruff Contributors Kubernetes Ready Neuromorphic Ready Streaming-Analytics Monitoring Security Compliance


Project AI is a modular, self-aware platform with autonomous agents, an AI persona, advanced memory, and Asimov’s Four Lawsβ€”blurring boundaries between cloud and edge, and engineered for defense in depth, streaming analytics, neuromorphic computing, and uncompromising security.


πŸ’‘ Key Features


πŸ›οΈ Architecture

src/app/
β”œβ”€ main.py
β”œβ”€ core/
β”‚   β”œβ”€ ai_systems.py Β· safety_levels.py Β· command_override.py
β”‚   β”œβ”€ red_hat_expert_defense.py Β· continuous_learning.py
β”‚   β”œβ”€ user_manager.py Β· local_fbo.py Β· emergency_alert.py Β· data_analysis.py
β”‚   β”œβ”€ snn_integration.py Β· snn_mlops.py Β· ai_security_framework.py Β· deepseek_v32_inference.py
β”œβ”€ agents/
β”‚   β”œβ”€ cerberus.py Β· planner.py Β· explainability.py Β· doc_generator.py
β”‚   β”œβ”€ retrieval_agent.py Β· ci_checker_agent.py Β· verifier_agent.py Β· border_patrol.py Β· expert_agent.py
β”œβ”€ gui/
β”‚   β”œβ”€ leather_book_interface.py Β· persona_panel.py Β· ...
β”œβ”€ web/
β”‚   β”œβ”€ backend/ Β· frontend/
β”œβ”€ monitoring/
β”‚   β”œβ”€ metrics_collector.py Β· ...
β”œβ”€ tools/, config/, data/, tests/, docs/

Core & Enterprise Systems

πŸ›οΈ Main Coordinator

Orchestrates persona, memory, agents, council, override, plugins, learning, threat defense, monitoring, and logging.

🦾 Cerberus (Defensive Oversight Agent)

Four Laws sentry and override/Black Vault gatekeeper, with geo/IP/incidence tracking, all actions logged.

πŸ“– Codex Deus Maximus (Knowledge/Orchestration)

Compliant, persistent + streaming knowledge; council orchestration, offline RAG, shadow/ANN→SNN learning, audit.


πŸ€– Agents & Plugins

Agent Role Key Highlights
Cerberus Security/law/defense Black Vault, override audit, escalation, incident logs
Planner Task/workflow logic Decomposition, workflow, council orchestration
Validator Health and sanity Validation, system health, approval gates
BorderPatrol Quarantine File sandbox, plugin validation, memory vaults
Explainability Traceability Real-time explanations, logs, UI, audit, transparency
RetrievalAgent Embedding/QA Vector search, doc QA, offline/local index
VerifierAgent Security checker CI/malware/dep audit, process pool
DocGenerator Docs automation Markdown docs from code
CIChecker CI/lint/coverage Dashboard/test reports, alerts
ExpertAgent Audit signoff Compliance, output validation
… Dynamic plugins Modular, CouncilHub agent registry

🦺 Security & Defense


πŸ“š Memory, Persona & Learning


πŸ–₯️ User Interface & Monitoring


🧠 Neuromorphic & Edge AI


πŸ”’ Security Compliance Framework


⚑ Streaming/Analytics


πŸš€ Install & Deploy

Requirements

Quickstart

git clone https://github.com/IAmSoThirsty/Project-AI.git
cd Project-AI
pip install -r requirements.txt
npm install && npm run build
python -m src.app.main

Full stack+monitoring

docker compose up
./scripts/deploy-monitoring.sh

πŸ§ͺ Testing, CI, Linting


πŸ›‘οΈ Observability


🧬 Neuromorphic Integration & MLOps

Library Functionality HW
BindsNet RL w/o forgetting PyTorch
Sinabs/Speck CNN-to-SNN/Vision/Edge SynSense
snnTorch/Norse PyTorch SNN, primitives/train Generic
Brian2/Lava Neuromorphic, Intel Loihi Loihi, bio sim
Nengo/Rockpool Neural engineering/hardware Many
… Full stack, prod ready Β 

πŸ† Security & Compliance


πŸ”₯ Example Monitoring/ML Code

from app.monitoring.metrics_collector import collector
collector.record_four_laws_validation(is_allowed=False, law_violated="first_law")
collector.collect_persona_metrics(persona_state)
collector.record_security_incident(severity="critical", event_type="breach_attempt")

from app.core.snn_integration import SNNManager
snn = SNNManager()
snn.load("bindsnet").infer(input_stream)

OpenTelemetry:

opentelemetry-instrument --traces_exporter otlp --metrics_exporter otlp --service_name project-ai python -m src.app.main

RisingWave Example:

from app.core.risingwave_integration import RisingWaveClient
client = RisingWaveClient()
client.create_source_kafka(...)
client.create_materialized_view(...)

πŸ—„ Configuration Example

config/
β”œβ”€β”€ prometheus/
β”‚   β”œβ”€β”€ prometheus.yml
β”‚   └── alerts/
β”‚       β”œβ”€β”€ ai_system_alerts.yml
β”‚       └── security_alerts.yml
β”œβ”€β”€ alertmanager/
β”‚   └── alertmanager.yml
└── grafana/
    β”œβ”€β”€ provisioning/
    └── dashboards/
        └── ai_system_health.json

🧩 Best Practices


🀝 Contribution & Docs

See:
CONTRIBUTING.md, SECURITY.md, AI_PERSONA_FOUR_LAWS.md, COMMAND_MEMORY_FEATURES.md, LEARNING_REQUEST_LOG.md, QUICK_START.md, INTEGRATION_SUMMARY.md
Docs: Project AI Docs
PRs/issues welcome, style/tests required


DeepSeek V3.2 / MOE

Summary

DeepSeek V3.2 Mixture-of-Experts LLM is fully integrated:

Python Module:

CLI:

Tests: 31/31 passing (18 unit, 13 integration, no regressions)
Quality: 100% lint/typehint, full logging, modular+extensible
Docs: See docs/DEEPSEEK_V32_GUIDE.md


βœ… GitHub Workflows Consolidation (Current)

Docs:


License

MIT License (see LICENSE)