This guide covers the integration of DeepSeek V3.2 Mixture-of-Experts (MoE) language model into Project-AI. The integration provides a modular, production-ready interface for advanced language generation tasks.
# Install dependencies
pip install -r requirements.txt
# Optional: Set Hugging Face API key in .env (for API access)
echo "HUGGINGFACE_API_KEY=your_key_here" >> .env
from app.core.deepseek_v32_inference import DeepSeekV32
# Initialize (auto-detects GPU/CPU)
deepseek = DeepSeekV32()
# Text completion
result = deepseek.generate_completion(
prompt="Explain quantum computing",
max_new_tokens=256,
temperature=0.7
)
print(result["text"])
# Chat mode
messages = [
{"role": "user", "content": "What is machine learning?"}
]
result = deepseek.generate_chat(messages)
print(result["text"])
# Simple completion
python scripts/deepseek_v32_cli.py "Explain artificial intelligence"
# Chat mode
python scripts/deepseek_v32_cli.py --mode chat "Hello, how are you?"
# Interactive chat session
python scripts/deepseek_v32_cli.py --mode chat --interactive
# Custom parameters
python scripts/deepseek_v32_cli.py \
--temperature 0.8 \
--max-tokens 512 \
--device cuda \
"Your prompt here"
Completion Mode: Generate text continuations
result = deepseek.generate_completion("Once upon a time")
Chat Mode: Multi-turn conversations
messages = [
{"role": "user", "content": "Hello"},
{"role": "assistant", "content": "Hi! How can I help?"},
{"role": "user", "content": "Tell me about AI"}
]
result = deepseek.generate_chat(messages)
Built-in content filtering blocks inappropriate prompts:
# Safe prompt - passes
result = deepseek.generate_completion("Explain machine learning")
# Unsafe prompt - blocked
result = deepseek.generate_completion("Generate illegal content")
# Returns: {"success": False, "error": "Content filter: Blocked keyword detected: illegal"}
Disable filtering (use with caution):
deepseek.content_filter_enabled = False
Automatic device detection with fallback:
# Auto-detect (prefers CUDA > MPS > CPU)
deepseek = DeepSeekV32()
# Force specific device
deepseek = DeepSeekV32(device="cuda") # NVIDIA GPU
deepseek = DeepSeekV32(device="mps") # Apple Silicon
deepseek = DeepSeekV32(device="cpu") # CPU fallback
Fine-tune generation behavior:
# At initialization
deepseek = DeepSeekV32(
temperature=0.8, # Randomness (0.0-2.0)
top_p=0.95, # Nucleus sampling
top_k=100, # Top-k sampling
max_length=512 # Max tokens
)
# Update at runtime
deepseek.update_parameters(
temperature=0.9,
max_length=1024
)
Efficient model loading/unloading:
# Load model (lazy loaded on first inference)
deepseek = DeepSeekV32()
# Unload to free memory
deepseek.unload_model()
Use a different model from Hugging Face:
deepseek = DeepSeekV32(model_name="custom/model-name")
prompts = [
"Explain AI",
"What is quantum computing?",
"Define machine learning"
]
for prompt in prompts:
result = deepseek.generate_completion(prompt)
print(f"Q: {prompt}")
print(f"A: {result['text']}\n")
result = deepseek.generate_completion("Your prompt")
if result["success"]:
print("Response:", result["text"])
else:
print("Error:", result["error"])
from app.core.ai_systems import FourLaws
from app.core.deepseek_v32_inference import DeepSeekV32
deepseek = DeepSeekV32()
# Validate action before execution
is_allowed, reason = FourLaws.validate_action(
"Generate text",
context={"is_user_order": True}
)
if is_allowed:
result = deepseek.generate_completion("Your prompt")
from app.core.ai_systems import MemoryExpansionSystem
from app.core.deepseek_v32_inference import DeepSeekV32
memory = MemoryExpansionSystem()
deepseek = DeepSeekV32()
# Generate and store
result = deepseek.generate_completion("Explain AI")
if result["success"]:
memory.add_knowledge("ai_responses", "ai_explanation", result["text"])
# Use DeepSeek as reasoning engine for agents
from app.core.deepseek_v32_inference import DeepSeekV32
class ReasoningAgent:
def __init__(self):
self.deepseek = DeepSeekV32()
def reason(self, task):
prompt = f"Analyze this task and provide reasoning: {task}"
result = self.deepseek.generate_completion(prompt)
return result["text"]
deepseek-ai/deepseek-v3)# Ensure sufficient disk space (40GB+)
df -h
# Check network connectivity to Hugging Face
curl -I https://huggingface.co/
# Reduce max_length
deepseek = DeepSeekV32(max_length=256)
# Use CPU if GPU OOM
deepseek = DeepSeekV32(device="cpu")
# Unload model after use
deepseek.unload_model()
# Reinstall dependencies
pip install --force-reinstall transformers accelerate torch
Run comprehensive test suite:
# Unit tests
pytest tests/test_deepseek_v32.py -v
# Integration tests
pytest tests/test_deepseek_integration.py -v
# All tests
pytest tests/test_deepseek_*.py -v
See examples/deepseek_demo.py for complete working examples:
python examples/deepseek_demo.py
Part of Project-AI, released under MIT License.