Hub_of_Epstein_Files_Directory

Azure Cost Reduction Guide

This document provides strategies to significantly reduce Azure infrastructure costs while maintaining functionality for the Epstein Files Hub.

Cost Comparison

Deployment Tier Monthly Cost Annual Cost Capabilities
Full Production $1,360 $16,320 All features, high performance
Optimized $675 $8,100 50% cost reduction, good performance
Budget $200 $2,400 85% cost reduction, adequate performance
Minimal/Free $0-50 $0-600 96%+ cost reduction, basic features

🎯 Optimized Tier ($675/month - 50% reduction)

Key Changes

  1. Downgrade service tiers where possible
  2. Use consumption plans instead of dedicated plans
  3. Implement aggressive caching to reduce API calls
  4. Use GitHub Pages for free hosting
  5. Batch process to reduce operations

Service Breakdown

1. Azure Cognitive Search: $250 → $75 (-70%)

Changes:

# Create Basic tier search service
az search service create \
  --name epstein-files-search \
  --resource-group epstein-files-rg \
  --sku basic

Limitations:


2. Azure Computer Vision: $100 → $30 (-70%)

Changes:

# Batch image processing example
def batch_process_images(images, batch_size=50):
    """Process images in batches to reduce API calls"""
    results = []
    for i in range(0, len(images), batch_size):
        batch = images[i:i+batch_size]
        # Process batch once, cache results
        result = vision_client.analyze_batch(batch)
        cache_results(result)
        results.extend(result)
    return results

Free Tier:


3. Azure Document Intelligence: $150 → $50 (-67%)

Changes:

# Selective document processing
def should_use_form_recognizer(doc):
    """Determine if document needs advanced processing"""
    # Use basic OCR for simple text documents
    if doc.is_text_only and not doc.has_tables:
        return False
    # Use Form Recognizer for complex legal docs
    return doc.is_legal or doc.has_complex_layout

Cost:


4. Azure OpenAI Service: $500 → $150 (-70%)

Changes:

# Cost-effective AI usage
class CostOptimizedAI:
    def __init__(self):
        self.cache = redis.Redis()
        
    def analyze_document(self, doc_id, text):
        # Check cache first
        cache_key = f"analysis:{doc_id}"
        if cached := self.cache.get(cache_key):
            return cached
            
        # Use cheaper model
        response = openai.ChatCompletion.create(
            model="gpt-3.5-turbo",  # Not gpt-4
            messages=[{"role": "user", "content": f"Analyze: {text[:2000]}"}],
            max_tokens=500  # Limit response length
        )
        
        # Cache for 30 days
        self.cache.setex(cache_key, 2592000, response)
        return response

Pricing:


5. Azure Blob Storage: $50 → $20 (-60%)

Changes:

# Lifecycle management policy
az storage account management-policy create \
  --account-name epsteinfilesstorage \
  --policy '{
    "rules": [{
      "name": "moveToCool",
      "type": "Lifecycle",
      "definition": {
        "actions": {
          "baseBlob": {
            "tierToCool": {"daysAfterModificationGreaterThan": 30},
            "tierToArchive": {"daysAfterModificationGreaterThan": 90}
          }
        }
      }
    }]
  }'

Storage Breakdown:


6. Azure Functions: $200 → $50 (-75%)

Changes:

# GitHub Actions for scheduled tasks (FREE)
name: Daily Maintenance
on:
  schedule:
    - cron: '0 2 * * *'  # 2 AM daily
jobs:
  maintenance:
    runs-on: ubuntu-latest
    steps:
      - name: Run cleanup
        run: |
          # Index health check
          python scripts/check_index.py
          # Storage cleanup
          python scripts/cleanup_trash.py

Consumption Plan Pricing:

Estimated Usage:


7. App Service: $55 → $0 (FREE with GitHub Pages)

Changes:

# .github/workflows/deploy-pages.yml (already created)
name: Deploy to GitHub Pages
on:
  push:
    branches: [main]
jobs:
  deploy:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      - uses: peaceiris/actions-gh-pages@v3
        with:
          github_token: $
          publish_dir: ./web

Cost: $0 (GitHub Pages is free for public repos)


8. Azure DevOps: $40 → $0 (FREE)

Changes:

Cost: $0 (public repo)


9. Azure Monitor: $50 → $0 (FREE tier)

Changes:

// Application Insights with sampling
const appInsights = require('applicationinsights');
appInsights.setup(process.env.APPINSIGHTS_KEY)
  .setAutoCollectConsole(true, false)
  .setAutoCollectExceptions(true)
  .setUseDiskRetryCaching(true)
  .setSendLiveMetrics(false)  // Disable live metrics
  .setDistributedTracingMode(appInsights.DistributedTracingModes.AI_AND_W3C);

// Enable sampling
appInsights.defaultClient.config.samplingPercentage = 10;
appInsights.start();

Cost: $0 (within free tier limits)


10. Azure Key Vault: $5 → $5 (unchanged)

Cost: $5 (minimal cost, essential for security)


Optimized Total: $675/month (50% reduction)

Service Original Optimized Savings
Cognitive Search $250 $75 -$175
Computer Vision $100 $30 -$70
Document Intelligence $150 $50 -$100
OpenAI Service $500 $150 -$350
Blob Storage $50 $20 -$30
Functions $200 $50 -$150
App Service $55 $0 -$55
DevOps $40 $0 -$40
Monitor $50 $0 -$50
Key Vault $5 $5 $0
TOTAL $1,360 $675 -$685 (50%)

💰 Budget Tier ($200/month - 85% reduction)

Aggressive Cost Cutting

Strategy

  1. Use free tiers extensively
  2. Client-side processing where possible
  3. Manual uploads instead of automated analysis
  4. Static data with periodic updates

Service Configuration

Service Cost Strategy
Storage $20 Archive tier for most files
Search $0 Client-side search (Lunr.js)
AI Services $100 Free tiers + minimal paid usage
Hosting $0 GitHub Pages
Functions $50 Consumption plan, minimal use
Other $30 Key Vault, networking
TOTAL $200 85% reduction

Implementation

1. Client-Side Search (Free)

<!-- Use Lunr.js for client-side search -->
<script src="https://unpkg.com/lunr/lunr.js"></script>
<script>
// Build search index from static JSON
fetch('data/search-index.json')
  .then(res => res.json())
  .then(documents => {
    const idx = lunr(function() {
      this.ref('id')
      this.field('title')
      this.field('content')
      this.field('location')
      
      documents.forEach(doc => this.add(doc))
    })
    
    // Search functionality
    window.search = (query) => idx.search(query)
  })
</script>

2. Pre-compute Everything

3. Minimal Azure Services


🆓 Minimal/Free Tier ($0-50/month - 96% reduction)

Complete Free/Low-Cost Stack

Architecture

  1. GitHub Pages - Static hosting (FREE)
  2. GitHub Actions - CI/CD (FREE for public repos)
  3. Cloudflare - CDN, DDoS protection, SSL (FREE)
  4. Supabase - Database (FREE tier: 500MB)
  5. Vercel - Serverless functions (FREE tier: 100GB bandwidth)
  6. Algolia - Search (FREE tier: 10K searches/month)

Service Breakdown

Service Provider Cost Limits
Hosting GitHub Pages $0 100GB bandwidth/month
Database Supabase $0 500MB storage, 2GB bandwidth
Search Algolia Free $0 10K searches/month
Functions Vercel/Cloudflare $0 100K requests/day
CDN/SSL Cloudflare $0 Unlimited bandwidth
CI/CD GitHub Actions $0 Public repos
Storage GitHub LFS $0 1GB (or use external)
Email SendGrid Free $0 100 emails/day
API Usage Various free tiers $0-50 Light usage
TOTAL   $0-50 96%+ reduction

Implementation Guide

1. Static Site Generation

# Generate static site with all data embedded
npm install -g @11ty/eleventy

# Build site with pre-computed data
eleventy --input=web --output=dist

2. Deploy to GitHub Pages

# .github/workflows/deploy.yml
name: Deploy
on: [push]
jobs:
  deploy:
    runs-on: ubuntu-latest
    steps:
      - uses: actions/checkout@v3
      - name: Build
        run: npm run build
      - name: Deploy
        uses: peaceiris/actions-gh-pages@v3
        with:
          github_token: $
          publish_dir: ./dist

3. Add Cloudflare for Performance

4. Use Algolia for Search

// Free tier: 10K searches/month
const algoliasearch = require('algoliasearch');
const client = algoliasearch('APP_ID', 'API_KEY');
const index = client.initIndex('epstein-files');

// Upload data once
index.saveObjects([
  {
    objectID: 'doc1',
    title: 'Flight Log Entry',
    date: '1999-12-15',
    location: 'Little St. James',
    content: '...'
  }
  // ... more documents
]);

// Search
index.search('Little St. James').then(({ hits }) => {
  console.log(hits);
});

5. Alternative: Client-Side Search

// Use Fuse.js for fuzzy search (completely free)
const fuse = new Fuse(documents, {
  keys: ['title', 'content', 'location', 'people'],
  threshold: 0.3
});

const results = fuse.search('Ghislaine Maxwell');

🔧 Cost Optimization Best Practices

1. Caching Strategy

# Multi-layer caching
import redis
import functools

# Redis for distributed cache
redis_client = redis.Redis()

def cached(ttl=3600):
    def decorator(func):
        @functools.wraps(func)
        def wrapper(*args, **kwargs):
            key = f"{func.__name__}:{args}:{kwargs}"
            
            # Check cache
            if cached := redis_client.get(key):
                return cached
                
            # Compute and cache
            result = func(*args, **kwargs)
            redis_client.setex(key, ttl, result)
            return result
        return wrapper
    return decorator

@cached(ttl=86400)  # Cache for 24 hours
def expensive_ai_call(text):
    return openai.complete(text)

2. Batch Processing

# Process in batches to reduce costs
def process_documents_efficiently(docs):
    # Group by similarity to reduce redundant processing
    batches = group_similar_docs(docs, batch_size=50)
    
    for batch in batches:
        # Process batch once
        results = batch_process(batch)
        
        # Cache results
        for doc, result in zip(batch, results):
            cache.set(doc.id, result, ttl=2592000)  # 30 days

3. Resource Monitoring

# Track costs in real-time
class CostMonitor:
    def __init__(self):
        self.costs = {
            'openai': 0,
            'vision': 0,
            'search': 0
        }
        
    def log_api_call(self, service, cost):
        self.costs[service] += cost
        
        # Alert if over budget
        if sum(self.costs.values()) > MONTHLY_BUDGET:
            send_alert("Cost threshold exceeded!")
            
    def get_projection(self):
        days_in_month = 30
        days_elapsed = datetime.now().day
        current_cost = sum(self.costs.values())
        
        return current_cost / days_elapsed * days_in_month

4. Smart Indexing

# Only index new/changed documents
def should_reindex(doc):
    last_indexed = get_last_index_time(doc.id)
    
    if not last_indexed:
        return True
        
    if doc.modified > last_indexed:
        return True
        
    return False

# Incremental indexing
def incremental_index():
    docs_to_index = [doc for doc in all_docs if should_reindex(doc)]
    
    if docs_to_index:
        search_client.index_documents(docs_to_index)

📊 Cost Reduction Roadmap

Phase 1: Immediate (Save $350/month)

Phase 2: Short-term (Save additional $335/month)

Phase 3: Medium-term (Save additional $475/month)

Phase 4: Long-term (Go nearly free)


💡 Recommendations

For Production Launch

Recommended: Optimized Tier ($675/month)

For Development/Testing

Recommended: Budget Tier ($200/month)

For Personal/Community Project

Recommended: Free Tier ($0-50/month)


🎯 Quick Start: Implement Optimized Tier

Step 1: Update Azure Resources

# Downgrade search to Basic
az search service update \
  --name epstein-files-search \
  --resource-group epstein-files-rg \
  --sku basic

# Switch Functions to Consumption plan
az functionapp create \
  --name epstein-files-functions \
  --resource-group epstein-files-rg \
  --consumption-plan-location eastus \
  --storage-account epsteinfilesstorage

# Configure lifecycle management
az storage account management-policy create \
  --account-name epsteinfilesstorage \
  --policy @lifecycle-policy.json

Step 2: Update Code for Efficiency

# Use GPT-3.5 instead of GPT-4
# Add caching layer
# Batch operations
# See code examples above

Step 3: Enable GitHub Pages

# Already configured in .github/workflows/deploy-pages.yml
# Just enable in repo settings

Step 4: Monitor Costs

# Set up cost alerts
az monitor action-group create \
  --name cost-alerts \
  --resource-group epstein-files-rg \
  --action email admin@example.com

# Create budget alert
az consumption budget create \
  --name monthly-budget \
  --amount 700 \
  --time-grain Monthly \
  --resource-group epstein-files-rg

📈 Cost Tracking Dashboard

Track your actual costs vs. target:

Month Target Actual Variance Action
Jan $675 - - Monitor
Feb $675 - - -
Mar $675 - - -

🔗 Additional Resources


Summary

You can reduce Azure costs by 50-96% depending on your needs:

Recommended approach: Start with Optimized tier ($675/month), monitor usage, then scale down to Budget or Free tier based on actual needs.