Hub_of_Epstein_Files_Directory

Search Bot Infrastructure (AI Agents Only)

This search infrastructure is designed for AI agent use only. It provides backend search capabilities across multiple search engines to help agents locate and retrieve information from the 30,000+ documents and 20,000+ images.

Overview

The search bots operate independently in the background, accessible only to other AI agents for information retrieval, fact-checking, and cross-referencing tasks. Users do not have direct access to search functionality; instead, they browse the AI-curated codex.

Search Agent Architecture

1. Multi-Engine Search Coordinator Agent

Purpose: Coordinates searches across multiple search engines simultaneously

Capabilities:

Search Engines Integrated:

Configuration:

coordinator:
  max_concurrent_searches: 10
  timeout_seconds: 30
  cache_ttl: 3600
  deduplication: true
  relevance_threshold: 0.7

2. Internal Document Search Agent

Purpose: Fast full-text search across indexed documents

Technology:

Features:

Index Structure:

{
  "document_id": "unique-id",
  "title": "document title",
  "content": "full text content",
  "summary": "AI-generated summary",
  "date": "2024-01-01",
  "category": "legal",
  "source": "SDNY",
  "verification_level": 1,
  "entities": ["person1", "location1"],
  "tags": ["keyword1", "keyword2"]
}

3. Image Search Agent

Purpose: Search and retrieve images from the 20,000+ image database

Capabilities:

Technology:

Search Methods:

  1. Content-based (visual similarity)
  2. Text-based (OCR content)
  3. Metadata-based (tags, locations, dates)
  4. Hash-based (exact and near duplicates)

4. Semantic Search Agent

Purpose: Natural language understanding and semantic search

Technology:

Capabilities:

Example Queries:

5. Entity Search Agent

Purpose: Search by people, places, organizations

Capabilities:

Entity Types:

6. Cross-Reference Search Agent

Purpose: Find relationships and connections between documents

Capabilities:

Algorithms:

7. Fact-Checking Search Agent

Purpose: Verify claims and find supporting evidence

Capabilities:

Process:

  1. Parse claim to verify
  2. Search across all sources
  3. Find supporting/contradicting evidence
  4. Assess source credibility
  5. Generate verification report

8. Source Verification Search Agent

Purpose: Validate document sources and authenticity

Capabilities:

Verification Levels:

Search APIs (AI Agents Only)

REST API Endpoints

Base URL: http://internal-api.epstein-codex.local/api/v1/

Authentication: Internal service token (not exposed to public)

POST /search/documents
{
  "query": "search terms",
  "filters": {
    "category": ["legal", "financial"],
    "date_range": {"start": "2005-01-01", "end": "2008-12-31"},
    "source": ["SDNY"],
    "verification_level": [1, 2]
  },
  "limit": 100,
  "offset": 0
}
POST /search/images
{
  "query": "search terms",
  "search_type": "text|visual|metadata",
  "filters": {
    "category": ["evidence", "location"],
    "date_range": {},
    "location": "Little St. James"
  }
}
POST /search/semantic
{
  "query": "natural language query",
  "context": "additional context",
  "max_results": 50
}
POST /search/entities
{
  "entity_type": "person|location|organization",
  "entity_name": "name",
  "relationship_type": "connected_to|mentioned_with",
  "depth": 2
}

Cross-Reference

POST /search/cross-reference
{
  "document_id": "doc-123",
  "relationship_types": ["cites", "cited_by", "related", "similar"],
  "max_depth": 3
}

Fact Check

POST /search/fact-check
{
  "claim": "statement to verify",
  "context": "additional context",
  "source_types": ["court", "government", "media"]
}

Search Engine Configuration

google_search:
  api_key: ${GOOGLE_SEARCH_API_KEY}
  cx: ${GOOGLE_CUSTOM_SEARCH_CX}
  safe_search: off
  num_results: 10
  rate_limit: 100/day

Bing Search API

bing_search:
  api_key: ${BING_SEARCH_API_KEY}
  endpoint: https://api.bing.microsoft.com/v7.0/search
  num_results: 10
  rate_limit: 1000/month

DuckDuckGo

duckduckgo:
  no_api_key_required: true
  rate_limit: respectful
  safe_search: off
azure_search:
  api_key: ${AZURE_SEARCH_KEY}
  endpoint: ${AZURE_SEARCH_ENDPOINT}
  index_name: epstein-documents
  scoring_profile: relevance-boost

Internal Elasticsearch

elasticsearch:
  hosts: [internal-es-cluster:9200]
  index: epstein-codex
  shards: 5
  replicas: 2
  max_results: 10000

Agent Communication Protocol

Inter-Agent Search Requests

Agents communicate via internal message queue (RabbitMQ):

{
  "request_id": "uuid",
  "requesting_agent": "document-analysis-agent",
  "search_type": "semantic",
  "query": {
    "text": "search query",
    "filters": {},
    "options": {}
  },
  "priority": "normal|high|urgent",
  "timeout": 30
}

Response Format

{
  "request_id": "uuid",
  "status": "success|partial|failed",
  "results": [
    {
      "document_id": "doc-123",
      "title": "Document Title",
      "relevance_score": 0.95,
      "summary": "...",
      "url": "internal://...",
      "metadata": {}
    }
  ],
  "total_found": 150,
  "search_time_ms": 245,
  "sources_searched": ["elasticsearch", "azure", "google"]
}

Performance Metrics

Target Performance

Monitoring

Rate Limiting & Quotas

External APIs

Agent Quotas

Security & Privacy

Access Control

Data Protection

Redaction

Caching Strategy

Multi-Level Cache

  1. L1 Cache: In-memory (Redis) - 15 minutes TTL
  2. L2 Cache: Disk cache - 24 hours TTL
  3. L3 Cache: Result database - 7 days TTL

Cache Invalidation

Search Quality Assurance

Quality Metrics

Continuous Improvement

Integration Examples

from search_api import SearchClient

search = SearchClient(service_token=SERVICE_TOKEN)

# Search for related documents
results = search.documents(
    query="Jeffrey Epstein Palm Beach",
    filters={
        "date_range": {"start": "2005-01-01", "end": "2008-12-31"},
        "category": ["legal", "investigation"]
    },
    limit=50
)

for doc in results:
    # Process each document
    analyze_document(doc)
# Find all documents mentioning an entity
entity_docs = search.entities(
    entity_name="Little St. James",
    entity_type="location",
    include_related=True
)

# Build entity profile
profile = build_entity_profile(entity_docs)
# Find all documents connected to a source document
related = search.cross_reference(
    document_id="doc-123",
    relationship_types=["cites", "cited_by", "mentions"],
    max_depth=2
)

# Build citation network
network = build_citation_network(related)

Maintenance

Daily Tasks

Weekly Tasks

Monthly Tasks


This search infrastructure operates entirely in the background, accessible only to AI agents for maintaining and organizing the Epstein Files Codex.

Last Updated: December 2024